解析引擎

相对于其他编程语言,SQL是比较简单的。 不过,它依然是一门完善的编程语言,因此对SQL的语法进行解析,与解析其他编程语言(如:Java语言、C语言、Go语言等)并无本质区别。

抽象语法树

解析过程分为词法解析和语法解析。 词法解析器用于将SQL拆解为不可再分的原子符号,称为Token。并根据不同数据库方言所提供的字典,将其归类为关键字,表达式,字面量和操作符。 再使用语法解析器将SQL转换为抽象语法树。

例如,以下SQL:

SELECT id, name FROM t_user WHERE status = 'ACTIVE' AND age > 18

解析之后的为抽象语法树见下图。

SQL抽象语法树

为了便于理解,抽象语法树中的关键字的Token用绿色表示,变量的Token用红色表示,灰色表示需要进一步拆分。

最后,通过对抽象语法树的遍历去提炼分片所需的上下文,并标记有可能需要改写的位置。 供分片使用的解析上下文包含查询选择项(Select Items)、表信息(Table)、分片条件(Sharding Condition)、自增主键信息(Auto increment Primary Key)、排序信息(Order By)、分组信息(Group By)以及分页信息(Limit、Rownum、Top)。 SQL的一次解析过程是不可逆的,一个个Token的按SQL原本的顺序依次进行解析,性能很高。 考虑到各种数据库SQL方言的异同,在解析模块提供了各类数据库的SQL方言字典。

SQL解析引擎

SQL解析作为分库分表类产品的核心,其性能和兼容性是最重要的衡量指标。目前常见的SQL解析器主要有fdb,jsqlparser和Druid。 Sharding-Sphere的前身,Sharding-Sphere在1.4.x之前的版本使用Druid作为SQL解析器。经实际测试,它的性能远超其它解析器。

从1.5.x版本开始,Sharding-Sphere采用完全自研的SQL解析引擎。 由于目的不同,Sharding-Sphere并不需要将SQL转为一颗完全的抽象语法树,也无需通过访问器模式进行二次遍历。 它采用对SQL半理解的方式,仅提炼数据分片需要关注的上下文,因此SQL解析的性能和兼容性得到了进一步的提高。

在最新的3.x版本中,Sharding-Sphere尝试使用ANTLR作为SQL解析的引擎,并计划根据DDL -> TCL -> DAL –> DCL -> DML –>DQL这个顺序,依次替换原有的解析引擎。 使用ANTLR的原因是希望Sharding-Sphere的解析引擎能够更好的对SQL进行兼容。对于复杂的表达式、递归、子查询等语句,虽然Sharding-Sphere的分片核心并不关注,但是会影响对于SQL理解的友好度。 经过实例测试,ANTLR解析SQL的性能比自研的SQL解析引擎慢3倍左右。为了弥补这一差距,Sharding-Sphere将使用PreparedStatement的SQL解析的语法树放入缓存。因此建议采用PreparedStatement这种SQL预编译的方式提升性能。

Sharding-Sphere会提供配置项,将两种解析引擎共存,交由用户抉择SQL解析的兼容性与性能。